

燃焼工学講座 赤松 史光

Spectrum of flame luminosity 50 mm C₂< CH-≻0H λnm

Non-luminous Flame

Spectrum of flame luminosity

OH and CH radical chemiluminescences

OH and CH chemiluminescences are emitted in the deactivation course (2) of OH* and (4) of CH* produced from the reaction (1) and (3), respectively.

$CH + O_2$	> CO + OH*	(1)
OH*	> OH + $h v$	(2)

C_2	+ OH	>	CO	+	CH*	((3)
	CH*	>	CH	+	hν	((4)

where the superscript * denotes an excited state, h is the Plank's constant, and v is the frequency of the chemiluminescence.

Direct photograph of Bunsen flame with measurement point

Single-lens optics for point measurement

Paraxial Approximation, Gaussian Lens Equation

 $\frac{1}{f_0} = \frac{1}{S_1} + \frac{1}{S_2} \rightarrow \begin{array}{c} \text{In Typical Case,} \\ S_1 = S_2 = 2f_0 \\ f_0: \text{ Focal Length} \end{array}$

For Example, $\begin{pmatrix} f_0 = 150 \text{(mm)} \\ S_1 = 300 \text{(mm)} \end{pmatrix}$, Then S₂ = 300 (mm)

Chromatic aberration of optics

Refractive index and focal length as functions of wavelength

Typical aberration of point measurement optics

Optimum pinhole location and diameter using ray-tracing method (D_L=50mm)

Optimum pinhole location and diameter as functions of lens diameter

Optimum pinhole location and diameter as functions of wavelength

Single-lens optics and Cassegrain optics

Multi-color Integrated Cassegrain Receiving Optics (MICRO)

Front view

Side view

Bird eye's view

Cassegrain optics

Sperical aberration of single-lens and Cassegrain optics

Estimation method of point measurement optics and distribution of collection rate

Collection rate distributions of single-lens and Cassegrain optics

Measured collection rate distributions Convex Mirror Concave Mirror **Quartz Fiber** (core : \$0.2mm) (%) Normalized intensity 0.050 **Collection rate** 0.025 Ο 0 position,2 (mm) position, Z (mm) 6 20. oosition. position; Calculated Measured

Light detection system of Cassegrain optics

New Light detection system of Cassegrain

Advantage of the MICRO system

- No Chromatic Aberration Consisting of only mirrors
- Minimum Spherical Aberration Optimization of two mirrors' curvature combination
- Very High Light Collection Rate Large diameter optics can be available due to elimination of spherical aberration.
- Short Control Volume Length Along Optical Path Minimum spherical aberration and masking effect of the center of convex mirror
- Easy Alignment of Optics Control volume can be visualized

Direct photograph of Bunsen flame with measurement point

Ion current and OH chemiluminescence

Ion current is produced from the following reactions.

OH chemiluminescence is emitted in the deactivation course (3) of OH* produced from the reaction (4).

$$CH + O_2 ---> CO + OH^*$$
 (3)
 $OH^* ---> OH + hv$ (4)

where the superscript * denotes an excited state, h is the Plank's constant, and v is the frequency of the chemiluminescence.

Time-series signals of ion current obtained by electrostatic probe, and OH chemiluminescence obtained by MICRO and single-lens optics

Time-series signals of OH radical chemiluminescence by the MICRO and ion current by the electro-static probe

Previous point measurement system

Example of MICRO Application

Simultaneous measurement with images

Rayleigh scattering measurement

Photograph of experiment

Measurement of spectrum

Monochromator

Spectrum of flame luminosity

Change of spectrum with location

Change of spectrum with location

Locations of chemiluminescence intensity peak

Change of spectrum with equivalence ratio

Change of peak intensity with equivalence ratio

Single-lens optics for point measurement

Change of spectrum with equivalence ratio

Measurement of time-series spectrum

Multi-point measurement

