噴霧火炎とその光学計測

Fuel atomization

Droplet size distribution

Complicated structure of spray flame

Gaseous fuel flame

Example of actual spray burner

Experimental apparatus

Time-series flame images

Spectrum of flame luminosity

Non-luminous flame

Spectrum of flame luminosity

Luminous flame

Chemiluminescence

OH chemiluminescence is emitted in the deactivation course (2) of OH* produced from the reaction (1).

 $CH + O_2 ---> CO + OH^*$ (1) $OH^* ---> OH + hv$ (2)

where the superscript * denotes an excited state, h is the Plank's constant, and v is the frequency of the chemiluminescence.

Simultaneous imaging system

Imaging area

Simultaneous images

Simultaneous images

Point measurement system

Time-series data of point measurement

Premixed-spray flame

 \overline{U} = 5.5 m/s, Re=19400, Φ =0.045kg_{fuel}/kg_{air}

Burner configuration

Premixed-spray flame

Long-exposure (1/15 s)

Short-exposure (1/1000 s)

 \overline{U} = 5.5 m/s, Re=19400, Φ =0.045kg_{fuel}/kg_{air}

Droplet group combustion

High-speed spray imaging

Burning spray image

Direct photograph Visualized spray

Time-series spray image

Non-combusting

Combusting

(a)

(a)

Rapid disappearance of a part of premixed spray

This is caused by ...

Turbulence associated with large eddies ?

Preferential flame propagation ?

LDV & PDA measurement

Laser light

Fringes in LDV control volume

Principle of velocity measurement

 $\therefore f_d = 1/\Delta t$

Configurations of FLDV

Transmission of optical fiber

Backscattering type LDV

Laser manipulator

Control volume of LDV

$$d_{w} = \frac{4\lambda F}{\pi d_{in}}$$

$$h_{m} = \frac{d_{w}}{\cos(\theta/2)}$$
$$N_{f} = \frac{h_{m}}{\delta_{f}}$$

$$\delta_{f} = \frac{\lambda}{2\sin(\theta/2)}$$

$$L_m = \frac{h_m}{\sin(\theta/2)}$$

 $V = \delta_f \cdot f_d$

Difference of fringe spacing

Small crossing angle

Large crossing angle

Specification of FLDV

Probe:	Focal length Spot diameter Fringe spacing Fringe number	400 68.1 4.16 16	mm µm µm
Range:	Maximum velocity	12.5	m/s
	Minimum velocity	-4.16	m/s
Wavelength	of laser beam	488	nm
Bandwidth	of signal process	sor 4	MHz
Frequency	shift	40	MHz

Droplet velocity vectors in flame

Setup of PDA system

Photograph of experiment

Laser light scattering of a transparent particle

Projected fringe pattern of a particle

Principle of diameter measurement

Selection of receiving angle

$$\varphi = 180^{\circ} - 2\varphi_{B}$$

$$\varphi_{B} = \tan^{-1} n$$

Phase-diameter relationship of different refractive index particle

Specification of PDA

Probe:	Focal length	310	mm
	Spot diameter	145	μm
	Fringe spacing	5.0	μ m
	Fringe number	29	
Range:	Maximum diameter	96.5	μm
	Maximum velocity	15.0	m/s
	Minimum velocity	-5.0	m/s
Focal length of receiving optics		310	mm
Wavelength of laser beam		514.5	nm
Bandwidth of signal processor		4	MHz
Frequency shift		40	MHz

Size-classified droplet velocity vectors in flame

Examples of PDA Results

Droplet Size Distribution

Size-Classified Velocity

Correlation of D and V_h

Ignition delay of spray

Photograph of experimental apparatus

Photograph of measurement section

Spray flame in stagnation flow

